2013国家公务员考试行测中概率的加乘原理
在概率计算中有两种基本的计算规律。一个是加法原理,一个是乘法原理。 一、加法原理,如果事件A可以分解成几个互不交叉的事件A1、A2、……An,那么事件A发生的概率就等于事件A1、A2、……An发生的概率之和。如: 【例1】在数学考试中,小明的成绩在90分以上的概率是0.05,在80-89分的概率是0.1,在70-79分的概率是0.25,在60-69分的概率是0.5,60分以下的概率是0.1,那么小明小明在数学考试中取得80分以上成绩的概率和小明考试及格的概率分别是多少? 显然,这几个事件是互不交叉的,因此求80分以上的概率只需将90分以上和80-89分的概率相加即可,也就是0.05+0.1=0.15;同样道理,及格概率就等于0.05+0.1+0.25+0.5=0.9。 另外,由于考试成绩要么及格要么不及格,所以二者概率和一定是1,因此及格概率=1-不及格概率=1-0.1=0.9。此种方法可以总结为: 事件A发生的概率=1-事件A不发生的概率。 二、乘法原理,如果事件A的发生可以看成几个事件A1、A2、……An的先后发生,那么事件A发生的概率就等于事件A1、A2、……An发生的概率之积。如: 【例2】投掷3枚硬币,3枚硬币都是正面朝上的概率是多少? 这个事件可以看成先扔1个硬币、再扔第2个硬币、再扔第3个硬币,由于扔每个硬币正面朝上的概率都是1/2,因此全都正面朝上的概率就是1/2×1/2×1/2=1/8。 结合上面所讲的三种方法,我们来看下面几道例题。 【例3】(吉林2007)有三张密封的奖券,其中一张有奖,共有三个人按顺序且每人只能抓走一张,问谁抓到奖的机会最大? A.第一个人 B.第二个人C.第三个人 D.一样大 【解析】第一个人从三张里面抽一张,中奖的概率一定是1/3; 第二个人要想中奖,需要有一个前提,那就是第一个人一定不能中奖,于是可以分为两个步骤,第一步第一人没中(概率2/3),第二步第二人中了(概率1/2),所以第二人中奖概率应为2/3×1/2=1/3; 类似地,第三个人中奖概率=2/3×1/2×1/1=1/3(前两人都没中,第三人中)。 因此,三人的中奖机会是一样大的,选D。 【例4】(2011年4.24联考)小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1、0.2、0.25、0.4,则他上班经过4个路口至少有一处遇到绿灯的概率是: A.0.899B.0.988C.0.989D.0.998 【解析】至少有一处遇到绿灯可以分为若干种情况,如第一个绿其他三个红,或第二个绿其他三个红……,情况太多了,如果一一列举相加,显然很麻烦。因此我们尝试下反向求解,看是否能求出“至少有一处遇到绿灯”不发生的概率,也就是全红灯的概率。 四灯全红可以看成先第一个灯红,再第二个灯红,……,因此全红概率=0.1×0.2×0.25×0.4=0.002,至少一绿的概率=1-全红概率=0.998,选D。 以上就是概率类问题中的两个基本运算规律,在公务员考试中,多数概率题目都是围绕着这两个基本运算展开的。华图公务员考试研究中心希望通过以上的说明和讲解可以切实地帮助到广大考生朋友们,让大家更快更好地解决此类问题。