国家公务员考试行测常用基础几何公式
二、基础几何公式 1.三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。 垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。 外心:三角形三边的垂直平分线的交点,叫做三角形的外心。外心到三角形的三个顶点的距离相等。 直角三角形:有一个角为90度的三角形,就是直角三角形。 直角三角形的性质: (1)直角三角形两个锐角互余; (2)直角三角形斜边上的中线等于斜边的一半; (3)直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半; (4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°; (5)直角三角形中,c2=a2+b2(其中:a、b为两直角边长,c为斜边长); (6)直角三角形的外接圆半径,同时也是斜边上的中线; 直角三角形的判定: (1)有一个角为90°; (2)边上的中线等于这条边长的一半; (3)若c2=a2+b2,则以a、b、c为边的三角形是直角三角形; 2.面积公式: 正方形=边长×边长; 长方形=长×宽; 三角形=×底×高; 梯形=; 圆形=R2 平行四边形=底×高 扇形=R2 正方体=6×边长×边长 长方体=2×(长×宽+宽×高+长×高); 圆柱体=2πr2+2πrh; 球的表面积=4R2 3.体积公式 正方体=边长×边长×边长; 长方体=长×宽×高; 圆柱体=底面积×高=Sh=πr2h 圆锥=πr2h 球= 4.与圆有关的公式 设圆的半径为r,点到圆心的距离为d,则有: (1)d﹤r:点在圆内(即圆的内部是到圆心的距离小于半径的点的集合); (2)d=r:点在圆上(即圆上部分是到圆心的距离等于半径的点的集合); (3)d﹥r:点在圆外(即圆的外部是到圆心的距离大于半径的点的集合); 线与圆的位置关系的性质和判定: 如果⊙O的半径为r,圆心O到直线的距离为d,那么: (1)直线与⊙O相交:d﹤r; (2)直线与⊙O相切:d=r; (3)直线与⊙O相离:d﹥r; 圆与圆的位置关系的性质和判定: 设两圆半径分别为R和r,圆心距为d,那么: (1)两圆外离:; (2)两圆外切:; (3)两圆相交:(); (4)两圆内切:(); (5)两圆内含:(). 圆周长公式:C=2πR=πd(其中R为圆半径,d为圆直径,π≈3.1415926≈); 的圆心角所对的弧长的计算公式:=; 扇形的面积:(1)S扇=πR2;(2)S扇=R; 若圆锥的底面半径为r,母线长为l,则它的侧面积:S侧=πr; 圆锥的体积:V=Sh=πr2h。